Chemistry Standard level Paper 1 11 May 2023 Zone A afternoon | Zone B morning | Zone C afternoon 45 minutes ## Instructions to candidates - Do not open this examination paper until instructed to do so. - Answer all the questions. - For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided. - The periodic table is provided for reference on page 2 of this examination paper. - The maximum mark for this examination paper is [30 marks]. | | 60 | 2
He
4.00 | 10
Ne
20.18 | 18
Ar
39.95 | 36
Kr
83.90 | 54
Xe
131.29 | 86
Rn
(222) | 118
Uuo
(294) | |--------------------|----|------------------------|--|--------------------------|--------------------------|---------------------------|---------------------------|------------------------------------| | | 17 | | 9
19.00 | 17
CI
35.45 | 35
Br
79.90 | 53
1
126.90 | 85
At
(210) | 117
Uus
(294) | | | 16 | | 8
o
16.00 | 16
S
32.07 | 34
Se
78.96 | 52
Te
127.60 | 84
Po
(209) | 116
Uuh
(293) | | | 15 | | 7
N
14.01 | 15
P
30.97 | 33
As
74.92 | 51
Sb
121.76 | 83
Bi
208.98 | 115
Uup
(288) | | | 4 | | 6
C
12.01 | 14
Si
28.09 | 32
Ge
72.63 | 50
Sn
118.71 | 82
Pb
207.2 | 114
Uug
(289) | | | 13 | | 5
B
10.81 | 13
AI
26.98 | 31
Ga
69.72 | 49
In
114.82 | 81
TI
204.38 | 113
Unt
(286) | | | 12 | | | | 30
Zn
65.38 | 48
Cd
112.41 | 80
Hg
200.59 | 112
Cn
(285) | | 4) | 1 | | | | 29
Cu
63.55 | 47
Ag
107.87 | 79
Au
196.97 | 111
Rg
(281) | | The Periodic Table | 10 | | | | 28
Ni
58.69 | 46
Pd
106.42 | 78
Pt
195.08 | 110
Ds
(281) | | | 6 | | | | 27
Co
58.93 | 45
Rh
102.91 | 77
Ir
192.22 | 109
Mt
(278) | | | ∞ | | umber
ent
mic mass | | 26
Fe
55.85 | 44
Ru
101.07 | 76
0s
190.23 | 108
Hs (269) | | | 7 | | Atomic number Element Relative atomic mass | | 25
Mn
54.94 | 43
Tc (98) | 75
Re
186.21 | 107
Bh (270) | | | 9 | | , å | | 24
Cr
52 00 | 42
Mo | 74
W
183.84 | 106
Sg
(269) | | | ro | | | | 23 < | 41
Nb | 73
Ta | 105
Db
(268) | | | 4 | | | | 22
Ti | 40
Zr | 72
Hf
178 49 | 104
Rf
(267) | | | က | | | | 21
Sc | 39 | 57 † La | 89 ‡ Ac (227) | | | 2 | | 4 Be | 12
Mg | 20
Ca | 38
38
Sr | 56
Ba | 88
Ra
(226) | | | - | - I | E 3 | 6.94
Na | 22.399
K | 39.10
37
Rb | 55
Cs | 132.91
87
Fr
(223) | | | | | | | | | | | Ŋ 9 | 71 | 103 | |-----------|-----------| | Lu | Lr | | 174.97 | (262) | | 70 | 102 | | Yb | No | | 173.05 | (259) | | 69 | 101 | | Tm | Md | | 168.93 | (258) | | 68 | 100 | | Er | Fm | | 167.26 | (257) | | 67 | 99 | | Ho | Es | | 164.93 | (252) | | 66 | 98 | | Dy | Cf | | 162.50 | (251) | | 65 | 97 | | Tb | Bk | | 158.93 | (247) | | 64 | 96 | | Gd | Cm | | 157.25 | (247) | | 63 | 95 | | Eu | Am | | 151.96 | (243) | | 62 | 94 | | Sm | Pu | | 150.36 | (244) | | 61 | 93 | | Pm | Np | | (145) | (237) | | 60 | 92 | | Nd | U | | 144.24 | 238.03 | | 59 | 91 | | Pr | Pa | | 140.91 | 231.04 | | 58 | 90 | | Ce | Th | | 140.12 | 232.04 | | + | ++ | - 1. Which is the correct equation for the electrolysis of molten sodium chloride? - A. $2NaCl(l) \rightarrow 2Na(l) + Cl_2(g)$ - $\mathsf{B.} \quad \mathsf{2NaCl}\,(\mathsf{s}) \to \mathsf{2Na}\,(\mathsf{s}) + \mathsf{Cl}_{\mathsf{2}}(\mathsf{g})$ - C. $2NaCl(l) \rightarrow 2Na(s) + Cl_2(g)$ - D. $2NaCl(aq) \rightarrow 2Na(s) + Cl_2(g)$ - 2. What is the mass of one molecule of C_{60} ? $$N_A = 6.0 \times 10^{23}$$ - A. 1.0×10^{-22} g - B. 2.0×10^{-23} g - C. 8.3×10^{-24} g - D. 1.2×10^{-21} g - 3. $20 \, \text{cm}^3$ of gas A reacts with $20 \, \text{cm}^3$ of gas B to produce $10 \, \text{cm}^3$ of gas $A_x B_y$ and $10 \, \text{cm}^3$ of excess gas A. What are the correct values for subscripts \mathbf{x} and \mathbf{y} in the empirical formula of the product $A_x B_y$ (g)? | | х | у | |----|---|---| | Α. | 2 | 1 | | В. | 2 | 2 | | C. | 1 | 1 | C. 1 1 1 D. 1 2 **4.** The volume V for a fixed mass of an ideal gas was measured at constant temperature at different pressures p. Which graph shows the correct relationship between pV against p? Α. В. C. D. **5.** What is the correct ground state electron orbital configuration for 2s²2p²? **6.** The following diagram shows a light passing through a cold gas cloud, and light from a hot gas cloud. Which types of spectra are associated with light passing through a cold gas cloud, **Spectrum A**, and light from a hot gas cloud, **Spectrum B**? | | Spectrum A | Spectrum B | |----|------------|------------| | Α. | Absorption | Emission | | B. | Emission | Absorption | | C. | Absorption | Absorption | | D. | Emission | Emission | - 7. What is the electron configuration for an element in group 4 period 5? - A. [Kr] 5s²4d² - B. [Ar] 4s²3d³ - C. [Ar] $4s^23d^{10}4p^3$ - D. [Kr] 5s²4d¹⁰5p² - 8. Which properties increase down the group 1 alkali metals? - I. atomic radii - II. melting point - III. reactivity with water - A. I and II only - B. I and III only - C. II and III only - D. I, II and III - 9. Which compound is both volatile and soluble in water? - A. NaCl - B. CH₃CH₂CH₃ - C. CH₃OH - $D. \quad C_{12}H_{22}O_{11}$ - **10.** Which are the correct sequences of **increasing** bond strengths and bond lengths between two carbon atoms? | | Bond strength | Bond length | |----|-------------------------|-------------------------| | Α. | $C\equiv C < C=C < C-C$ | $C\equiv C < C=C < C-C$ | | B. | $C\equiv C < C=C < C-C$ | $C-C < C=C < C\equiv C$ | | C. | $C-C < C=C < C\equiv C$ | $C\equiv C < C=C < C-C$ | | D. | $C-C < C=C < C\equiv C$ | $C-C < C=C < C\equiv C$ | - 11. What is the electron domain geometry of sulfur dioxide, SO₂? - A. bent - B. linear - C. tetrahedral - D. trigonal planar - 12. What is the correct comparison of H-N-H bond angles in NH₂⁻, NH₃, and NH₄⁺? - A. $NH_2^- < NH_3 < NH_4^+$ - $B. \quad NH_4^+ < NH_3 < NH_2^-$ - C. NH_3 $< NH_2^- < NH_4^+$ - D. NH_3 $< NH_4^+ < NH_2^-$ - **13.** The enthalpy of formation of ammonia gas is -46 kJ mol⁻¹. $$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$ - What is the energy released, in kJ, in the reaction? - A. 23 - B. 46 - C. 69 - D. 92 - 14. What is ΔH , in kJ, for the reaction $N_2H_4(l) + H_2(g) \rightarrow 2NH_3(g)$? | Reaction | $\Delta \mathbf{H}$ | |---|---------------------| | $N_2H_4(l) + CH_3OH(l) \rightarrow CH_2O(g) + N_2(g) + 3H_2(g)$ | −37 kJ | | $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ | -46 kJ | | $CH_3OH(l) \rightarrow CH_2O(g) + H_2(g)$ | -65 kJ | - A. -18 - B. 18 - C. -83 - D. -148 - **15.** Which statement concerning bond breaking is correct? - A. Requires energy and is endothermic. - B. Requires energy and is exothermic. - C. Releases energy and is endothermic. - D. Releases energy and is exothermic. - **16.** Curve **X** on the following graph shows the volume of oxygen formed during the catalytic decomposition of a 1.0 mol dm⁻³ solution of hydrogen peroxide. $$2H_2O_2(aq) \rightarrow O_2(g) + 2H_2O(l)$$ Which change would produce the curve Y? - A. Adding water. - B. Adding some 0.1 mol dm⁻³ hydrogen peroxide solution. - C. Adding some 2.0 mol dm⁻³ hydrogen peroxide solution. - D. Repeating the experiment without a catalyst. 17. A potential energy profile is shown for a reaction. Which energy changes would a catalyst affect? - A. I and II only - B. I and III only - C. II and III only - D. I, II and III - 18. Which condition will cause the given equilibrium to shift to the right? $$Ag^{+}(aq) + Cl^{-}(aq) \rightleftharpoons AgCl(s)$$ - A. One half of solid AgCl is removed. - B. Water is added. - C. Solid NaCl is added. - D. The system is subjected to increased pressure. - 19. Which reaction represents the neutralization of a Brønsted-Lowry acid and base? - A. $2HCl(aq) + Zn(s) \rightarrow ZnCl_2(aq) + H_2(g)$ - $\text{B.} \quad 2\text{HCl}\left(\text{aq}\right) + \text{ZnO}\left(\text{s}\right) \rightarrow \text{ZnCl}_{2}\left(\text{aq}\right) + \text{H}_{2}\text{O}\left(\text{l}\right)$ - C. $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(l)$ - D. $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$ | | | - 10 - | 2223-6116 | | |-----|--|--|-----------|--| | 20. | What is the hydroxide ion concentration in a solution of pH = 4 at 298K? | | | | | | Α. | 4 | | | | | B. | 10 | | | | | C. | 10 ⁻⁴ | | | | | D. | 10 ⁻¹⁰ | | | | 21. | Whi | ch element has variable oxidation states in its compounds? | | | | | Α. | Potassium | | | | | B. | Calcium | | | | | C. | Fluorine | | | | | D. | Bromine | | | | 22. | Which chemical process would produce a voltaic cell? | | | | | | Α. | spontaneous redox reaction | | | | | B. | spontaneous non-redox reaction | | | | | C. | non-spontaneous redox reaction | | | | | D. | non-spontaneous non-redox reaction | | | | 23. | Whic | ch species could be reduced to form SO ₂ ? | | | | | Α. | S | | | | | B. | H_2SO_3 | | | | | C. | H ₂ SO ₄ | | | D. (CH₃)₂S ## 24. Which compound is an aromatic ester? - **25.** Which products could be obtained by heating isomers of C₃H₈O under reflux with acidified potassium dichromate (VI)? - I. propanal - II. propanone - III. propanoic acid - A. I and II only - B. I and III only - C. II and III only - D. I, II and III **26.** What is the preferred IUPAC name of the structure shown? - A. 2-ethyl-3-methylbutan-1-ol - B. 2,3-dimethylbutan-2-ol - C. 1-ethyl-2-methylpropan-1-ol - D. 1,1,2-trimethylpropan-1-ol - 27. What are the most likely reactions ethene and benzene will undergo? | | Ethene | Benzene | |----|--------------|--------------| | A. | Addition | Substitution | | B. | Addition | Addition | | C. | Substitution | Addition | | D. | Substitution | Substitution | - **28.** Which observation would explain a systematic error for an experiment involving the combustion of magnesium to find the empirical formula of its oxide? - A. The crucible lid was slightly ajar during heating. - B. The product was a white powdery substance. - C. The crucible had black soot on the bottom after heating. - D. The flame colour during heating was yellow. 29. The following graph shows the concentration of C₄H₉Cl versus time. What is the average rate of reaction over the first 800 seconds? - A. $1 \times 10^{-3} \, \text{mol dm}^{-3} \, \text{s}^{-1}$ - B. $1 \times 10^{-4} \,\mathrm{mol}\,\mathrm{dm}^{-3}\,\mathrm{s}^{-1}$ - C. $2 \times 10^{-3} \,\text{mol dm}^{-3} \,\text{s}^{-1}$ - D. $2 \times 10^{-4} \, \text{mol dm}^{-3} \, \text{s}^{-1}$ - **30.** Which compound will have only one ¹H NMR signal and show a carbonyl group in the IR spectrum? - A. CH₃CHO - B. CH₃COOH - C. CH₃OCH₃ - D. CH₃COCH₃ ## Disclaimer: Content used in IB assessments is taken from authentic, third-party sources. The views expressed within them belong to their individual authors and/or publishers and do not necessarily reflect the views of the IB. References: 6. Palma, C., 2020. Kirchoff's Laws and Spectroscopy, ASTRO 801 Planets, Stars, Galaxies and the Universe. [online], The Pennsylvania State University. Available at: https://www.e-education.psu.edu/astro801/content/ 13_p6.html> [Accessed 15 June 2021]. 13. Argonne National Laboratory, 2021. Active Thermochemical Tables. [online] Available at: https://atct.anl.gov/Thermochemical%20Data/version%201.118/species/?species_number=43> Blaber, M., 1996. Chemical Kinetics. [online] Available at: https://mikeblaber.org/oldwine/chm1046/ [Accessed 14 June 2021]. [Accessed 14 July 2021]. 29.